
Kismet Mobile Client

Robert Bauer

I. ABSTRACT
The goal of this project is to create a Kismet client which could be run from a mobile

device, such as an iPod, connect to a Kismet server, and monitor and review the wireless access
points processed by the server. Kismet is a Unix/Linux 802.11x protocol analyzer, which has a
server and client components. The client component is available to monitor and review the data
the server has processed, but is a console based application and difficult to read on a mobile
device.

II. PROBLEM
Kismet is a Unix/Linux 802.11x protocol analyzer, which has a server and client

components. The client component is available to monitor and review the data the server has
processed. The Kismet client is a console based application, which is difficult to read on a
mobile device or remote display. The goal of this project is to enable a mobile device, such as an
iPhone, to connect to a Kismet server as a client and leverage features available to the native
device, such as mapping and a touch interface.

There exists a need to be able to remotely monitor a Kismet server from a mobile device.
For instance, Kismet may be used to monitor wireless access points in a given area and trigger an
alarm if an unauthorized access point is attached to the network, and to detect this remotely.

For this project, a Kismet server has been configured to be mobile. It resides in a vehicle
and can be driven around - logging wireless access points and their GPS coordinates where the
signal was detected (much like how Google Maps logs wireless access points to help triangulate
a user's position without a GPS signal). The Kismet server is running "headless,” meaning it
does not have a monitor or LCD screen attached nor an input device. In most cases, it runs fine
without interruption or problems. At times, a hardware fault, either on the Kismet server
hardware or Kismet drone, may interrupt monitoring. This interruption goes unnoticed until it is
time to review the Kismet results. It would be ideal to be able to determine if Kismet is running
as well as what it is currently monitoring. Therefore, the goal of this project is to create a Kismet
client which could be run from a mobile device, connect to a Kismet server, and monitor and
review the wireless access points processed by the server.

 Also a problem is mobile devices have limited resources and processing power. A large
amount of data must be communicated via a small screen. The device needs to be able to
establish a network connection to the Kismet server and establish a conversation with it using the

Kismet protocol. A Wi-Fi connection to the same network the Kismet server is on will be
sufficient. An added bonus would be to leverage Google Maps to display access points
geographically. Another concern is local storage. It would be ideal to retain the collected access
points to local storage. This would allow reviewing the access points at a later time, helpful
when not driving.

III. DESIGN
The Kismet setup consists of the following equipment and their role:

• An Asus Eee Box PC running Ubuntu. It runs the Kismet server. Kismet drones and the
mobile client communicate with this machine. The Kismet server is configured to get
GPS data from the GPS enabled Linksys router.

• One Linksys WRT54G router running as a Kismet drone

• Two Linksys WRTSL54GS routers

o One router is a Kismet drone with a GPS mounted and running GPSd. The
Kismet server polls this device to get the GPS coordinates for logging.

o The second router is configured as a Wi-Fi bridge. It links the devices on the
local network (eeePC, and other routers) to a cellular phone which provides the
internet connectivity.

The routers and the PC all have startup scripts that launch the necessary services to start
Kismet monitoring.

For this project, the mobile device being used is an Apple iPod. It has Wi-Fi built in, but
does not have access to the cellular network. This means the iPod must get internet access from
its connected Wi-Fi network. The connected network gets its internet connection from the
bridged router and a mobile phone. The iPod connects via Wi-Fi to the bridged router and can
access the Kismet server and the internet, including Google Maps.

The application itself should be able to store a collection of Kismet server connections.
The user should be able to edit and delete existing connections. The user should be able to tap a
connection to connect to a Kismet server. Upon connecting, the application will show the access
points as they are received from the Kismet server, with the most recent listed in descending
order. This screen is the WAPListView (WAP being Wireless Access Point). From the
WAPListView, the user can do one of two actions. The user can click on the action button at the
top right and see a list of access points plotted on Google Maps or the user can click on an access
point to view the access point details.

The goal of the project was to develop a prototype and if time allowed, to develop a
version for the iPad and Android.

IV. IMPLEMENTATION
Development for the iPod was done using Apple’s XCode development tool. A

prototype application was built using Objective-C. GitHub was used as the source code
repository. GitHub is also being used to track the project status as well as the open and closed
issues [1].

One of the first issues identified was the need to be able to perform integration testing
using the mobile app against a Kismet server. The issue is the Kismet server equipment resides
in the trunk of a vehicle and is powered off during development. It was also realized if the
mobile app is to be submitted in the Apple App Store, they will need to test the application and
they will not have a properly configured Kismet server available to test against. To resolve both
issues, a Kismet server simulator was built using PHP and is located in GitHub [2]. For security,
it does not act on any commands given to it. When executed, it listens for connections. When
there is a connection, the script forks and establishes the connection. It then starts mimicking the
Kismet server by sending a notification header and then starts sending mock access point data
back to the client. This mock server allows testing to take place without the actual Kismet
network.

The Kismet mobile application was developed and followed the model-view-controller
design pattern recommended by Apple. The following frameworks were used:

• CoreData – used to persist access point data

• MapKit – used for interacting and displaying Google Maps

• CoreLocation – used to get device location

• SystemConfiguration – used to persist Kismet server connections

• AsyncSocket – a third party open source asynchronous socket communications
class

• REVClusterMap – a third party open source Google Map’s annotation clustering
API. This is used to reduce the number of annotations on the map as the map is
zoomed out. Through experimenting, the iPod could handle about 600
annotations on a map before suffering performance issues or crashing.

CoreData is an Apple provided data store. It manages the Kismet server connections,
which allows the user to enter multiple Kismet servers and save them when the user returns to
the application. When the user is connected to a Kismet server, all access points returned to the
client are stored using CoreData. The CoreData model is:

KismetServer

 serverName
 port
 orderingValue
 address

AccessPoint

 addedOn
 bssid
 channel
 ignore
 lastSeen
 maxalt
 maxlat
 maxlon
 maxrate
 maxspd
 minalt
 minlat
 minlon
 minspd
 rangeip
 ssid
 type
 wep

The CoreData model contains an one-to-many object relationship between the
KismetServer object and AccessPoint object.

The client application establishes a socket connection to the Kismet server and issues
commands to setup receiving access point and GPS data. As the data is received, it is parsed and
stored in the AccessPoint table. A listener has been setup to listen for changes to this table and
update the display. This process continues until the connection is lost or the user selects a
different activity within the app or device.

V. CONCLUSION AND FUTURE WORK
There were performance issues with receiving the data, storing it, and updating the

display. After a number of access points, the application’s performance would degrade to the
point it was no longer updating in real time. The application has been tweaked from 200 access
points to 1500 access points, but this is still not performing as desired. Apple mentions this
approach of recording a record at a time is not ideal for performance and other alternatives are
recommended. Some approaches were tried such as disabling updates and changing how many
records are buffered before being written with degradation in performance. The current method
has been kept for demo purposes, but likely needs to be rewritten to remove the object
relationship and replace it with a primary/foreign key relationship, although there is no guarantee
this will resolve the performance issue. Another possible solution would be to use an observer
pattern for both the display and the CoreData object model. Both would get updated as data
comes in, with the object model being updated possibly in a different thread, leaving the GUI
thread available and responsive.

Overall, the Kismet Client application is functional and achieves the objectives of this
project as a mobile Kismet client. The user interface could use some additional work to make it
less plain. An iPad specific version would be useful. It could make use of the split view (only
available on the iPad) to display access points as they are received and show and update Google
Maps in real time.

This project allowed me to practice and apply my Objective-C skills. I learned how to
use CoreData objects. I also learned how to implement and communicate over sockets in iOS. I
encountered performance issues with the UITableView object and was able to resolve those, but
was not able to resolve issues with inserting and updating data in CoreData, although strategies
have been discussed for possible solutions. The project source code is in publicly accessible
GitHub, which gave me an opportunity to learn distributed revision control Git and the web-
based Git repository hosting service GitHub.

VI. REFERENCES
[1] https://github.com/rsbauer/KismetClient
[2] https://github.com/rsbauer/KismetServerSimulator
[3] Project page: http://www.rsbauer.com/apps/kismetclient

https://github.com/rsbauer/KismetClient�
https://github.com/rsbauer/KismetServerSimulator�

	I. Abstract
	II. Problem
	III. Design
	IV. Implementation
	V. Conclusion and Future Work
	VI. References

